AVR ist eine 8-Bit Microcontroller-Familie mit RISC-Architektur. Im Gegensatz zu vielen anderen Microcontroller-Architekturen hat die AVR-Architektur keine Vorgänger. Sie ist ein komplettes Neudesign, das Anfang der 90-Jahre an der Universität von Trondheim/Norwegen entwickelt und vom (bis heute einzigen) Hersteller Atmel aufgekauft wurde. Es gibt eine ganze Serie von AVR-Controllern. Sie alle werden ähnlich programmiert, haben vergleichbaren Befehlssatz und physikalische Eigenschaften, bieten jedoch unterschiedliche Features und Peripherie.
Es gibt zahlreiche und kostenlose Entwicklungssysteme in den Sprachen Basic, C/C++, Pascal und Assembler für diese Controller-Familie.
Inhaltsverzeichnis
Wofür steht AVR?
"AVR" steht angeblich für Advanced Virtual RISC (in einem Paper der Entwickler des AVR-Kerns Alf Egin Bogen und Vegard Wollan). Laut Atmel bedeutet es nichts.
Hardware
AVR-Controller besitzen eine zweistufige Pipeline (fetch and execute), die es ermöglicht, die meisten Befehle innerhalb eines einzigen Prozessortaktes auszuführen. Dadurch ist ein AVR wesentlich schneller als etwa 8051-Controller, bei denen der Prozessortakt intern noch durch 12 geteilt wird.
- AVR-Kern
- Harvard-Architektur (getrennter Befehls- und Datenspeicher)
- 32 Register, kein Akkumulator, 3 Pointerregister
- EEPROM-Datenspeicher
- Watchdog, Bootloader-Support, verschiedene Stromspar-Modi, Brownout-Erkennung, Interner Oszillator
- Lineares Speichermodell (keine Segmentierung)
- 8-Bit Architektur ist für Hochsprachen (C) optimiert
- In-System programmierbar: die Controller können sehr einfach über ein Programmierkabel (oft ISP-Kabel genannt), das mit dem PC verbunden wird, programmiert werden – auch dann, wenn sie sich nicht in einer Schaltung befindet.
- umfangreiche Peripherie
- 8- und 16-Bit-Timer/Counter mit PWM, Capture/Compare, externe Betaktung, asynchrone Operation
- Kommunikation: USART, SPI, I2C (TWI)
- Analog-Comparator, Analog-Digital-Wandler
- unterschiedlichste externe und interne Interrupt-Quellen (UART, SPI, Timer, A/D-Wandler, Analog-Comparator, ...)
- JTAG (Debugerinterface)
- AVR Typen (AT90 "Classic AVR", ATtiny, ATmega)
- erhältlich in unterschiedlichen Gehäusen, idR Durchsteck und als SMD
- Viele Entwicklungsboards erhältlich, z.B. das Roboternetzboard RN-Control
Einige Pinbelegungen der populärsten AVR-Controller
(in etwa nach Leistungsfähigkeit sortiert)
- Atmel Controller Mega128 (SMD-Chip)
Die AVR-Pin-Bezeichnungen und deren Funktion
Die meisten Ports sind doppelt belegt und besitzen neben der normalen Port-Funktion noch eine Sonderfunktion. Die verschiedenen Pinbezeichnungen und Sonderfunktionen werden hier beschrieben:
Versorgungs- und Referenzpins, Reset | |
---|---|
VCC | Versorgungsspannung von 2,7 Volt bis 6 V bei den L-Varianten (low power), ansonsten 4,5V bis 6V. Die nächste AVR-Generation soll ab 1,8 Volt funktionieren. |
GND | Masse |
AREF | Referenzspannung für den Analog-Digital-Wandler (kann auf 5V gesetzt werden). Auch die interne Bandgap-Referenzspannung kann über diesen Pin entstört werden (dann KEINE externe Spannung an diesen Pin geben (Kurzschluss)!). |
AGND | Alternative Masse, etwa um ein Verbindungspunkt mit GND zu haben und bei empfindlichen Messungen Masseschleifen zu vermeiden. |
AVCC |
Die Betriebsspannung für den Analog-Digital-Wandler (siehe Beschaltungsskizze). Die Pins AVCC, AGND und AREF sollten immer beschaltet werden, da es sonst passieren kann, dass Port A nicht richtig funktioniert, selbst wenn man den AD-Wandler nicht benutzt. |
RESET | Rücksetz-Eingang, intern über einen Pullup mit VCC verbunden. Ein LOW–Pegel an diesem Pin für die Dauer von mindestens zwei Zyklen des Systemtaktes bei aktivem Oszillator setzt den Controller zurück. Rücksetzen der Ports erfolgt unabhängig von einem evtl. anliegenden Systemtakt. |
PEN | Programming Enable - Diesen Pin gibt es nur beim Mega128/64 u.ä. Wird dieser Pin beim Power-On Reset nach Masse gezogen, geht der Controller in den ISP Programmiermodus. Man kann ihn also alternativ zu Reset verwenden. In der Regel verwendet man aber die Reset-Leitung und PEN sollte man direkt mit VCC verbinden. |
System-Takt | |
XTAL1 | Eingang des internen Oszillators zur Erzeugung des Systemtaktes bzw. Eingang für ein externes Taktsignal, wenn der interne Oszillator nicht verwendet werden soll bzw. Anschluss von Quarz/Keramik-Resonator/RC-Glied. |
XTAL2 | Anschluss von Quarz oder Keramik-Resonator oder Ausgang des integrierten Oszillators zur Nutzung als Systemtakt (Je nach Fuse-Einstellungen). |
Digitale bidirektionale I/O-Ports | |
Jeder Pin der Ports kann individuell als Eingang oder Ausgang konfiguriert werden. Die I/O-Ports sind maximal 8 Bit breit und verfügen ja nach AVR-Typ über eine unterschiedliche Anzahl von Pins. An jedem als Eingang (Input) geschalteten Pin gibt es zuschaltbare Pullup-Widerstände, die teilweise auch bei aktivierter Sonderfunkton verfügbar sind.
Bei eingeschalteten Sonderfunktionen wie UART, SPI, ADC, etc. sind die entsprechenden Pins nicht als "normale" digitale I/O verwendbar, sondern dienen der Sonderfunktion. Die Anzahl der als I/O verwendbaren Pins ist auch abhängig von den Fuse-Einstellungen (Vorsicht beim Umstellen, Handbuch GENAU lesen!). | |
PA 0 – 7 | Port A |
PB 0 – 7 | Port B |
PC 0 – 7 | Port C |
PD 0 – 7 | Port D |
PE 0 – 7 | Port E |
PF 0 – 7 | Port F |
PG 0 – 7 | Port G |
Externe Interrupts | |
Die PCINT-Interrupts gibt es nur für neuere AVRs wie den ATmega88. Falls die Anzahl an externen Interrupts nicht ausreicht, kann evtl. auch andere Hardware dafür eingesetzt werden, etwa der Analog-Comparator mit interner Bandgap-Referenz, falls er anderwärtig nicht gebraucht wird. | |
INT0 | Externer Interrupt 0 |
INT1 | Externer Interrupt 1 |
INT2 | Externer Interrupt 2 |
PCINTx | Pin-Change Interrupt |
Timer und PWM | |
T0 | Timer-Eingang. Timer kann gestartet, gestoppt oder getaktet werden |
T1 | Timer-Eingang. Timer kann gestartet, gestoppt oder getaktet werden |
OC0 | PWM bzw. Output Compare Ausgang des Timers 0 |
OC1A | Ausgang für die Compare-Funktion des integrierten Zeitgeber- / Zählerbausteines
Der erste PWM-Ausgang des Timers1. Er kann zum Regeln der Bot-Motogeschwindigkeit benutzt werden. |
OC1B | Ausgang für die Compare-Funktion des integrierten Zeitgeber- / Zählerbausteines
Der zweite PWM-Ausgang des Timers1. Er kann zum Regeln der Bot-Motogeschwindigkeit benutzt werden. |
ICP1 | Eingang für die Capture-Funktion des integrierten Zeitgebers / Zählerbausteines |
OC2 | Pwm bzw. Output Compare Ausgang des Timers2. Er kann zum Regeln der Bot-Motogeschwindigkeit benutzt werden. |
TOSC1, TOSC2 | TOSC1 und TOSC2 sind Eingänge für den asynchronen Modus von Timer2. Sie sind vorgesehen für den Anschluss eines externen Uhrenquarzes ( 32.768 kHz ). Damit lassen sich zum Beispiel sehr genaue Ein-Sekunden-Impulse für eine Uhr generien. |
Analog-Digital-Wandler | |
ADC0 bis ADC7 | Eingänge des AD-Wandlers. Spannungen können hier gemessen werden oder an den Analog-Komparator weiter geleitet werden. |
Analog-Komparator | |
AIN0, AIN1 | Die beiden externen Eingänge des Analog-Komparators.
Mit AIN0(+) und AIN1(-) kann man zwei Spannungen miteinander vergleichen. Wenn die Spannung an AIN0 höher als bei AIN1 ist, liefert der Komparator "High", ansonsten ein "Low". Als interne Eingänge des Komparators können die Interne Bandgap-Referenzspannung oder Ausgänge des ADC-Multiplexers dienen. |
Serielle Schnittstelle (USART) | |
RXD | Eingang der Seriellen Schnittstelle (Receive Data), TTL-Pegel |
TXD | Ausgang Serielle Schnittstelle (Transmit Data), TTL-Pegel |
XCK | Externe Takt für den USART. Wird nur in Sonderfällen für den Takt benötigt.
USART ("Universal Synchronous/Asynchronous Receiver and Transmitter"). Das ist die serielle Schnittstelle, die zur Datenübertragung zwischen Mikrocontroller und PC genutzt wird. Zur bidirektionalen Übertragung werden zwei Pins am Controller benötigt: TXD und RXD. Über TXD ("Transmit Data") werden Daten gesendet, RXD ("Receive Data") dient zum Empfang. |
SPI-Schnittstelle | |
SS | SPI-Interface – wird beneötigt um den richtigen Slave am Bus zu wählen |
MOSI | SPI-Interface – Datenausgang (als Master) oder Dateneingang (als Slave), verwendet bei ISP (In-System-Programmierung) |
MISO | SPI-Interface – Dateneingang (als Master) oder Datenausgang (als Slave), verwendet bei ISP (In-System-Programmierung) |
SCK | SPI-Interface – Bustakt vom Master, verwendet bei ISP (In-System-Programmierung) |
I2C-Schnittstelle (TWI) | |
SDA | I2C-Schnittstelle (Bus aus 2 Leitungen) Datenleitung |
SCL | I2C-Schnittstelle (Bus aus 2 Leitungen) Clockleitung |
JTAG-Interface | |
TDI | JTAG-Debug Interface - Über dieses Interface kann man den AVR programmieren und debuggen. Die Schnittstelle ist ähnlich wie die SPI Schnittstelle und hat getrennte Dateneingangs- und Datenausgangsleitungen sowie eine Taktleitung. TDI ist die Dateneingangsleitung |
TDO | JTAG-Debug Interface - TDO ist die Datenausgangsleitung des JTAG Interface |
TMS | JTAG-Debug Interface |
TCK | JTAG-Debug Interface |
Timer der AVRs
Die Mikrocontroller der AVR-Familie besitzen je nach Typ eine unterschiedliche Anzahl an programmierbaren Timern. Bei den aktuellen ATmegas sind das mindestens ein 8-Bit Timer und bei größeren Ausführungen der Serie auch 16-Bit Timer. Die Timer werden immer Timerx benannt, wobei x für die Timernummer steht (also 0, 1, 2, usw.). Die Konfigurationsmöglichkeiten sind von Timer zu Timer unterschiedlich.
Hinweis: Die folgenden Code-Beispiele sind in C programmiert und wurden für einen ATmega32 entwickelt. Sie lassen sich also ohne große Änderungen auch auf anderen Mikrocontrollern der AVR-Familie einsetzen.
Allgemeine Funktionsweise
Timer funktionieren nach dem allgemeinen Prinzip, dass sie eine Ganzzahl (im weiteren als Zähler bezeichnet) je nach Betriebsmodus auf- oder abwärtszählen, d.h. inkrementieren bzw. dekrementieren.
Angenommen, der Timer arbeitet im einfachsten Betriebsmodus, dem normalen Modus (siehe Normaler Modus (Normal Mode)). Die Zählrichtung des Timers ist aufsteigend gerichtet. Je nach Auflösung, also 8-Bit oder 16-Bit, erreicht der Zähler irgendwann einen bestimmten Zustand. Möglich wäre, dass er überläuft, wenn z.B. bei einem 8-Bit Timer der Wert 255 inkrementiert wird (siehe Grafik).
Der Prescaler
Der Prescaler (eng. = Vorteiler) kann dazu genutzt werden, den Takt, der den Timern zugeführt wird, zu verkleinern. U.a. kann man damit die Timer so konfigurieren, damit diese in den unterschiedlichsten Frequenzen takten. Hier eine Grafik die den Prescaler veranschaulicht:
Das obere Diagramm zeigt den Betrieb ohne Prescaler, das untere mit Prescaler. Die gestrichelte Linie zeigt, wann ein Interrupt eintritt.
Im Teil Die Betriebsmodi wird weiter auf die praktische Verwendung des Prescalers eingegangen.
Die Betriebsmodi
Die AVR-Timer können in unterschiedlichen Betriebsmodi betrieben werden. Diese sind:
- Normaler Modus
- CTC Modus
- PWM
Normaler Modus (Normal Mode)
Der einfachste Betriebsmodus ist der normale Modus. Er funktioniert wie im Abschnitt "Allgemeine Funktionsweise" beschrieben. Die Zählrichtung des Timers ist immer aufsteigend, und irgendwann kommt es zu dem Interrupt Timer-Overflow (welcher in einer passend ISR aufgefangen werden kann). Im einfachsten Fall kann man diesen Modus in folgendem Diagramm darstellen:
Der Zähler des Timers (im Diagramm oben, die aufsteigende und dann wieder zurückgesetzte Linie) ist in dem Register TCNTx gespeichert, wobei x für eine Zahl steht. Soll z.B. auf den Timer0 (siehe Datenblatt des jeweiligen Controllers) des Controllers zugegriffen werden, so ist an TCNT eine 0 anzuhängen, also TCNT0. Wie lange es braucht, bis der Zähler einen Overflow auslöst, ist von der Taktfrequenz des Controllers, dem eingestellten Prescaler-Wert und von der Timerauflösung abhängig. Nun wäre es ja sehr unpraktisch, wenn wir den Zähler nicht anpassen könnten. Denn sonst müssten wir unsere Software die den Timer benutzt evtl. anpassen und viel rechnen um z.B. für 1000 ms zu schlafen. Deswegen kann auf den Zähler zugreifen und ihn vorladen bevor dieser wieder vom eigentlichen Timer hochgezählt wird. Dies veranschaulicht folgendes Diagramm:
Dadurch kann man den Timer beeinflussen, und beeinflussen wie lange es dauert, bis ein Overflow auftritt. Um zu berechnen, welchen Wert wir vorladen müssen, kann man auch ein Java-Applet nutzen, siehe unter Weblinks Java Applet.
Natürlich kann man das auch "von Hand" rechnen. Die Berechnung des Preloader- sowie Prescalerwerts bei Verwendung der Overflow-Interrupts, eines Prescalers von 64 (nicht alle Prescaler können verwendet werden) und eines Quarzes mit der Frequenz von 8 MHz sieht folgendermaßen aus (gesuchte Frequenz beträgt 1000 Hz unter der Verwendung des Timer0 eines ATmega32):
- [math]Prescale = Frequenz * 1000000 [Hz] = 8000000[/math]
- Wir definieren den maximalen Zählerwert. Dieser ist bei einem 8-Bit Timer 256, bei einem 16-Bit Timer 65536. In unserem Fall ist der maximale Zählerwert 256, weil Timer0 verwendet wird.
- Nun wird die Variable Prescale (s.o.) durch den verwendeten Prescaler (64) geteilt ([math]8000000 Hz / 64 = 125000[/math]).
- Als nächstes wird der im dritten Punkt errechnete Wert durch die gesuchte Frequenz geteilt [math]=125000 / 1000Hz = 125[/math].
- Nun wird mathematisch überprüft, ob der errechnete Wert aus dem vierten Punkt kleiner als der maximale Zählerwert ist. Trifft dies zu, so subtrahiert man den errechneten Wert vom maximalen Zählerwert ([math]= 256 - 125 = 131[/math]).
Damit haben wir den Wert errechnet, der bei jedem Interrupt, den der Timer0 auslöst, in TCNTx (in diesem Fall TCNT0) nachgeladen werden muss, damit die Interrupts in dem gewünschten Zeitabstand von einer Millisekunde ausgelöst werden.
Allerdings bleibt zu bemerken, dass bei der Verwendung einer "ungeraden" Quarzfrequenz (z.B. 7,3728 MHz) der Timer mit einer bestimmten Ungenauigkeit arbeitet. Würden wir z.B. den Quarz oben mit einem Quarz mit 7,3728 MHz austauschen, so wäre die Fehlerrate 0,17%. Diese Ungeauigkeit varriert von verwendetem Prescaler zu Prescaler. D.h. wenn wir einen Prescaler von 1024 (und einer Quarzfrequenz von 8 MHz) verwendet hätten, so hätten wir eine inakzeptable Ungeauigkeit von 11,61%. Deswegen sollte sie eines der genannten Programme unter Avr#Weblinks verwenden, denn diese zeigen nur die bestmögliche Konfiguration an.
Die Fehlerrate kann natürlich auch ausgerechnet werden. Hier die Rechenschritte (sie sind erweiternd zu der oberen Berechnung):
- Als erstes wird mathematisch überprüft, ob der Preloaderwert (siehe fünften Schritt oben) größer als 1 ist.
- Trifft dies zu, so wird als nächstes die resultierende Frequenz errechnet. Die geschieht folgendermaßen: Der errechnete Preloaderwert aus der Rechnung oben wird vom maximalen Zählerwert subtrahiert, anschließend mit dem Prescaler multipliziert und dann das Ganze durch die Variable Prescale geteilt
[math](256 - 131) \cdot 64 / 8\,000\,000 \mathrm{Hz} \cdot 1\,000\,000 = 1000[/math].
- Nun wird die gesuchte Frequenz vom errechneten Wert aus dem dritten Punkt subtrahiert und dann wiederum durch diese geteilt [math](1000-1000) / 1000 = 0[/math]. Damit läuft dieser Timer genau mit einer Fehlerrate von 0 %.
Betreibt man den Timer im Overflow-Modus, so muss man, wie bereits erwähnt, nach/bei jedem Overflow-Interrupt den Timer nachladen. Der Interrupt heißt in diesem Fall SIG_OVERFLOWx (x steht für die Nummer des Timers). Dieser muss in einer ISR abgefangen werden.
Zusammenfassend ein Beispielprogramm:
/* Es wird der Timer2 (8-Bit) eines ATmega32 verwendet, der mit einem Quarz mit 7,3728 MHz betrieben wird. Im Abstand von 0,001 ms erzeugt der Timer einen Interrupt, also eine Frequenz von 1000000 Hz (oder 100 kHz). Der Timer wird auf einen Prescaler von 1 und einem Preloader von 183 konfiguriert.*/ volatile uint8_t countTimer2; // Speichert den aktuellen Zählerwert // ISR zum auffangen der Interrupts: SIGNAL(SIG_SIG_OVERFLOW2) { countTimer2++; TCNT2 = 183; // Nachladen } // Initialisierung: TCCR2 = (1<<CS22); // Prescaler von 1 TCNT2 = 183; // Vorladen TIMSK |= (1<<TOIE2); // Interrupts aktivieren und damit Timer starten sei(); // Funktionen zum benutzen der Timer: /** Diese Funktion nicht aufrufen. Wird von sleep_millisec aufgerufen. Bei t=100 schläft die Funktion 1 ms. */ inline void sleep (uint8_t t) { // countTimer2 wird in der ISR oben inkrementiert countTimer2 = 0; while (countTimer2 < t); } /** Schläft x-Millisekunden. */ inline void sleep_millisec(uint16_t msec) { uint16_t i; for(i=0; i<msec; i++) { sleep(100); } }
Allerdings wird auf diese leicht veraltete Technik nun nicht weiter eingegangen. Der Artikel wendet sich nun dem neueren "Compare Output"-Betriebsmodus zu.
Beim "Compare Output"-Betriebsmodus wird genauso ein Zähler hochgezählt. Allerdings wird der Zählerwert nach jeder Inkrementierung mit einem vom Benutzer festgelegten Wert verglichen. Entspricht der Zählerwert dem gespeicherten Wert, so kommt es zu einem Interrupt. Dieser Wert wird in das Register OCRx (x steht wieder für die Timernummer) gespeichert. Je nach Auflösung des Timers ist dieses Register 8-Bit oder 16-Bit breit.
Hinweis: Siehe CTC Modus unten. Dieser wird benötigt um den Timer entsprechend im "Compare Output"-Betriebsmodus vernünftig zu betreiben.
Hier ein typisches Diagramm dieses Betriebsmodus (Hinweis: Das Diagramm wurde unter Verwendung des CTC Modus erstellt. Für Begriffserklärung siehe CTC Modus):
Das Ausrechnen des Werts, der in OCRx geschrieben werden muss, damit Frequenz x entsteht, ist nicht sonderlich schwer. Man geht wie bei der Berechnung des Werts für den Overflow-Modus vor (s.o.) nur daß man das resultierende Ergebnis vom maximalen Zählerwert (bei 8-Bit Auflösung ist dieser 256, bei 16-Bit Auflösung 65536) subtrahiert. Das Ergebnis wird dann einmalig in das Register OCRx geschrieben. Mann muss also nicht wie beim Overflow-Modus den Timer nach jedem Interrupt nachladen. Der enstehende Interrupt heißt in diesem Fall SIG_OUTPUT_COMPAREx (x steht für die Nummer des Timers). Dieser muss in einer ISR abgefangen werden.
Wiederum zusammenfassend ein Beispielprogramm:
/* Es wird der Timer2 (8-Bit) eines ATmega32 verwendet, der mit einem Quarz mit 7,3728 MHz betrieben wird. Im Abstand von 0,001 ms erzeugt der Timer einen Interrupt, also eine Frequenz von 1000000 Hz (oder 100 kHz). Der Timer wird auf einen Prescaler von 1 und einem OCR2-Wert von 73 konfiguriert.*/ volatile uint8_t countTimer2; // Speichert den aktuellen Zählerwert // ISR zum auffangen der Interrupts: SIGNAL(SIG_OUTPUT_COMPARE2) { countTimer2++; } // Initialisierung: TCCR2 = (1<<CS22) | (1<<WGM21); // Prescaler von 1 | CTC-Modus (siehe unten für Beschreibung) OCR2 = 73; // Vergleichswert TIMSK |= (1<<OCIE2); // Interrupts aktivieren und damit Timer starten sei(); // Funktionen zum benutzen der Timer: /** Diese Funktion nicht aufrufen. Wird von sleep_millisec aufgerufen. Bei t=100 schläft die Funktion 1 ms. */ inline void sleep(uint8_t t) { // countTimer2 wird in der ISR oben inkrementiert countTimer2 = 0; while (countTimer2 < t); } /** Schläft x-Millisekunden. */ inline void sleep_millisec(uint16_t msec) { uint16_t i; for(i=0; i<msec; i++) { sleep(100); } }
CTC Modus (Clear Timer on Compare Match mode)
Der CTC Modus ist eine Erweiterung des "Compare Output"-Betriebsmodus. Der CTC Modus wird z.B. für das obere Beispielprogramm benötigt. Wird der Timer nämlich im normalen Betriebsmodus betrieben, so ist seine Zählergrenze je nach Auflösung 255 oder entsprechend für die 16-Bit Timer. Erst wenn diese Grenze erreicht wurde, wird der Timer zurückgesetzt (also auf 0). Durch den CTC Modus wird der Timer augenblicklich automatisch nachdem ein "Compare Output"-Interrupt auftrat zurückgesetzt. Man kann also die maximalen Zählergrenze selber definieren. Dieses Diagramm veranschaulicht den CTC Modus. Nach dem Interrupt wird der Timer sofort wieder zurückgesetzt.
PWM
Für PWM siehe Pwm.
Registerübersicht
Hinweis: Diese Registertabelle wurde für den aktuellen Atmel Controller Mega16 und Mega32 erstellt. Wenn Sie ein anderes Modell verwenden, kann es sein, dass ein oder mehrere Register nicht existieren, oder sie eine andere Bezeichnung haben.
TIMSK | ||||||||||||||||||
Mit diesem Register, der von allen Timern verwendet wird, lässt sich die Interruptausführung und Art des jeweiligen Timers bestimmen.
| ||||||||||||||||||
|
Die Fusebits
Fusebits nennt man bestimmte Bits zur Konfigurierung eines AVR-Controllers. Bei der Auslieferung neuer AVR Controller sind die Fusebits bereits vorkonfiguriert. In vielen Fällen kann man die Konfiguration unverändert belassen, je nach Controllertyp. Bei den Typen Mega xxx bestimmen einige Fusebits beispielsweise, dass der interne Taktgeber aktiviert ist. Möchte man dagegen einen externen Quarz anschließen oder die Taktfrequenz ändern, so müssen auch die Fusebits geändert werden. Auch das Deaktivieren des "On Chip Debugging" Modus ist oft notwendig, wenn man alle Ports ausnutzen möchte.
Die Fusebits werden in der Regel über die Software eingestellt, welche auch für das Übertragen des Programmcodes zuständig ist. Besonders einfach geht dies beispielsweise mit der Entwicklungsumgebung Bascom. Aber auch andere Programme wie PonyProg können für die Umstellung der Fusebits genutzt werden. Einmal eingestellte Fusebits bleiben bis zur erneuten Fusebit-Änderung erhalten. Der normale Programmiermodus verändert die Fusebits nicht.
Je nach AVR Controllertyp sind unterschiedliche Fusebits (Einstellungen) vorhanden. Die genaue Beschreibung findet man im jeweiligen Datenblatt. Da aber falsch gesetzte Fusebit-Einstellungen zu den häufigsten Problemen gehören, liste ich hier die Funktion der üblichen Fusebits nochmals genauer auf:
CKSEL0, CKSEL1, CKSEL2, CKSEL3 | Die Kombination dieser 4 Fusebits bestimmt die Taktquelle des Controllers. Das kann eine interner Taktgenerator, ein Quarz, Quarzoszillator, RC-Glied und ähnliches sein. |
JTAGEN | Hiermit wird die "On Chip Debugging" Schnittstelle aktiviert bzw. deaktiviert. Das sind die Bits mit den Bezeichnungen TDI, TDO, TMS und TCK. Möchte man diese Pins als normalen Port nutzen, so muss diese Schnittstelle immer deaktiviert werden. |
SUT0, SUT1 | Die sogenannte StartUp-Zeit (PowerOn delay). Diese Einstellung muss abhängig von der Art des Taktgenerators eingestellt werden, genaueres im jeweiligen Datenblatt. |
SPIEN | Hiermit kann die serielle ISP-Programmierung, welche die meisten Programmierkabel nutzen, deaktiviert werden. Dies sollte man lieber vermeiden, denn wenn dieser Programmiermodus deaktiviert wurde, kann nur noch der Parallel-Programmiermodus genutzt werden. Der Parallel-Programmiermodus benötigt jedoch ein spezielles Programmiergerät, das die wenigsten Bastler besitzen. Also Vorsicht! |
BODEN | Über dieses Bit wird der Brown-out Detector aktiviert bzw. deaktiviert. Dies ist eine Überwachung der Betriebsspannung. Diese Überwachung soll dafür sorgen, dass bei Spannungseinbrüchen ein ordentlicher RESET durchgeführt wird. Dadurch wird verhindert, dass ein Controller in einen undefinierten Zustand gerät (hängen bleibt). |
BOOTLEVEL | Über dieses Bit kann die Spannung festgelegt werden, ab welcher der Brown-out Detector den Controller neu startet (also RESET ausführt). |
BOOTRST | Gewöhnlich startet ein Programm im Controller nach einem RESET ab Adresse 0. Durch dieses Fusebit kann der Controller jedoch veranlasst werden, nach einem Reset einen sogenannten Bootloader-Bereich auszuführen. Ein Bootloader kann genutzt werden, um Controller über andere Schnittstellen (z.B. RS232) zu programmieren. |
BOOTSZ0, BOOTSZ1 | Der zuvor genannte Bootloaderbereich kann bei AVR-Controllern verschieden groß sein. Über diese beiden Bits können vier verschiedene Größen eingestellt werden. Siehe unter Bootloader. |
EESAVE | Dieses Bit legt fest, ob beim Programmieren des Controllers (man nennt es auch brennen) immer das EEPROM gelöscht werden soll. |
CKOPT | Abhängig von den Einstellungen von CKSEL kann hier dir Oszillator-Verstärkung eingestellt werden. Genaueres im Datenblatt des jeweiligen Controllers. |
WDTON | Schaltet den WatchDog-Timer beim Booten ein/aus. Dies ist auch per Software möglich |
RSTDISBL | Durch dieses Bit kann man den RESET-Pin deaktivieren und dann als normalen I/O-Port nutzen. Aber Vorsicht! Da die RESET-Leitung beim Programmieren (Brennen) des Chips genutzt wird, kann man nach dessen Deaktivierung den Controller mit den üblichen ISP-Adaptern nicht mehr programmieren. In diesem Fall könnte man zwar den Controlle noch mit speziellen Programmiergeräten im Parallelmodus programmieren, aber in der Praxis verfügen nur wenige Bastler über ein Programmiergerät, das dies leistet. |
LB1, LB2 | Das sind die sogenannten Lockbits, mit denen sich das Auslesen des Flash- als auch EEPROM-Speichers verhindern läßt. Zwar können andere Anwender immer noch Daten lesen, allerdings handelt es sich dabei nicht mehr um den wirklichen Inhalt sondern lediglich um wirre Datenbytefolgen. Programmierer, die den erarbeiteten Code vor Raubkopierern schützen wollen, nutzen diese Lockbits. Das Programmieren ist auch bei gesetzen Lockbits noch möglich. Der Bootloader-Bereich wird nicht durch die Lockbits geschützt. |
BLB01, BLB02 | Durch diese Bits kann der Code sogar vor dem Zugriff durch den Bootloader geschützt werden |
BLB11, BLB12 | Diese Bits schützen den Bootloaderbereich selbst |
Wie man die Fusebits mit Bascom einstellt, wird im Beitrag Bascom - Erstes Programm in den AVR Controller übertragen erläutert.
Autoren des Artikels: Frank, Luma
Siehe auch
- Atmel
- AVR-Einstieg leicht gemacht
- avr-gcc - Leistungsfähiger AVR-Port des freien Compilers GCC
- AVR Assembler Einführung (AvrStudio)
- AVR-ISP Programmierkabel - Bauanleitung für die AVR Controller Programmierkabel
- RN-Control - Eines der beliebtestet AVR-Boards im Roboternetz
- RNBFRA-Board - Größeres Board mit zwei Atmel Controllern
- Bascom - Sehr gutes Basic-Entwicklungssystem
- Bascom - Erstes Programm in den AVR Controller übertragen
- On Chip Debugging
- Bootloader
- Timer
- TWI - I2C beim AVR